首页> 外文OA文献 >Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System
【2h】

Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

机译:桥梁动态称重系统的人工神经网络车辆信号分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.
机译:本文介绍了使用人工神经网络为桥梁动态称重(B-WIM)系统开发信号分析算法的过程。通过分析程序,尝试从B-WIM系统的时域应变数据中提取有关重型车辆的信息,例如重量,速度和轴数。作为几种可能的模式识别技术之一,采用了人工神经网络(ANN),因为它可以有效地包含动态效果和桥梁与车辆之间的相互作用。在两种不同类型的桥梁(简单支撑的预应力混凝土梁桥和斜拉桥)上进行了许多具有足够载荷工况的车辆行驶实验。在实验过程中,还使用了不同类型的WIM系统,例如高速WIM或低速WIM,以进行交叉检查并验证所开发算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号